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Terminologies (1/2)

• (approximate) Cholesky factorization: 

– Direct solver, preconditioner

• Schur-monotonic – successive Schur complement  matrices 

are positive definite

• Semi-Separable (SS) matrix – a tool from structured matrices 

to achieve low complexity
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Terminologies (2/2)

• Direction-preserving – avoid any approximation along some 

known directions: 

• MILU:                      maintain “row-sum”  (d = 1) 

• for a vector x, with diag. perturbations (d=1)

– Dupont-Kendall, Axelsson-Gustafsson, Notay

– Reduce condition number of elliptic discretization matrices

(i.e., from O(h-2) to O(h-1) )

• Frequency filtering (d = 1, 2) (Wittum et al., Axelsson-Polman)

• Algorithms unknown for general d, until now …

– Elasticity problems with d rigid body modes

– Application in AMG: 

• Vector preserving interpolation matrices

• Kernel preserving Non-Galerkin coarse-grid matrices
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Outline 

• Construction algorithm for SS-approximate factorization with 

the desired properties

• Quality of the approximation as preconditioner
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• Block Cholesky factorization

for  block  k = 1, 2, …, n

Cholesky factor

Triangular solve

Schur complement

endfor 

• New approximate Cholesky factorization, satisfying

• S is an upper triangular semi-separable matrix

Mathematical formulation
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• Semi-separable matrix with 4 x 4 blocks
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Semi-separable matrix (1/2)

• First and second off-diagonal blocks of A are

• (k,t) block entry is 

are of  small dimension <= block size p 
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Semi-separable matrix (2/2)

• A is N x N, uses O(N p) memory, good for  p << N

• Examples: banded matrices and their inverses

• Representation can be numerically constructed

• Related work on structured matrices

– H-matrix,   H2-matrix (Hackbusch, Starr and Roklin, et al.)

(hierarchical matrices)

– FMM matrix  (Greengard and Roklin, et al.)

– HSS matrix (Hierarchical SS)   (Chandrasekaran et al.)
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The Construction Algorithm

• Embed SS construction scheme in Cholesky factorization to 

ensure each approximate Schur complement positive definite,   

and  A*Z  unchanged at each step



•

• are of small dimensions (related to numerical rank) 

Semi-separable Cholesky factor
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• Perform low-rank approximations via rank revealing QR, or 

1. Decompose intermediate matrices in SVD form

2. Furthermore, want direction-preserving

 Denote this procedure as:  (“constrained” SVD)

Main tools
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• Factor: 

• Approximate H1 and preserve A*Z:

Use procedure “DPsvd”:

so that

• Approximate Schur complement

SAVING: NOT to compute        explicitly, but only store

Partition

Schur complement becomes

Construction: STEP 1
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Construction: STEP 2

• Updates

• Factor

Define    

Then

• Approximate          and preserve A*Z:

Use procedure: 

• Approximate Schur complement
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• Use partition

the first two blocks of the (approx.) Cholesky factor is

• Pictorial view

Construction: end of STEP 2
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Complexity

• Operations

– Let      be the maximum dimension in all the diagonal blocks

– Cost of each step (update & compression):  

– Total : 

• Storage

– Only need to store                                 each of dimension <= 

– Total :

( Implementation:  4 arrays of size (N, p) )   
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Quality of the approximation



Example 1:  2D anisotropic diffusion equation on [0,1]x[0,1]

• Assume a mixture of Dirichlet and Neumann boundary 

conditions

• Use lexicographic ordering of the unknowns

• Direction vectors:

– d=1: constant vector

– d=2, 3: linear functions x and y evaluated at the mesh nodes
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• p – block size,  r – max rank

• Number of PCG iterations decreases with more directions

• Larger rank results in better approximation

• Doubling block size and rank, construction time less than 

doubled

Diffusion problem
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d=0   time d=1 d=2 d=3   time d=0   time d=1 d=2 d=3   time

12 28    0.00 24 21 20    0.01 7       0.00 1 1 1      0.00

24 61    0.05 55 51 51    0.07 28     0.05 24 23 20    0.13

48 115   0.57 113 121 110   0.91 77     1.00 65 65 53    1.14

96 233   8.52 221 216 210  13.74 158 15.48 139 185 118  18.49

22,8  drp 102,20  drp1h

3
,01.0


 



• PDE is very ill-conditioned when           is very large. Iterative 

methods,  including MG,  diverge or converge very slowly

• Direction vectors: d=2 corresponds to two rigid-body modes 

with entries alternating (1,0) and (0,1):

Let  u=(u1, u2),  one of the modes is such that all discretized u1

nodes are 1 and u2 nodes are 0;  the other mode is vice versa

Example 2:  2D linear elasticity equation

constants Lame  theare    and              

fieldnt vector displaceme is   where,

on     0                                    
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Elasticity problem
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• Define

• When                , directions and larger block/rank are helpful

• When                ,  directions are helpful, but larger block/rank 

do not help  

1ˆ  RARA T

d=0 d=2 d=0 d=2

(1.0, 1.0) 8

16

32

32   1.5e+1

62   6.4e+2

123   2.5e+3

25     9.7e+1

48     4.7e+2

92     1.7e+3

16      2.9e+1

64      8.6e+2

83      3.0e+3

11        1.9e+1

31        2.0e+2

62        1.2e+3

(1.0, 10-4) 8
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243    3.1e+5

549    1.1e+6

1216  4.5e+6

236    3.5e+5

440    9.7e+5

1258  4.3e+6

12       1.3e+1

1230   1.7e+6

1867   7.0e+6

9          1.3e+1

1203    2.0e+6

1996    8.6e+6
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• Construct SS-approximate Cholesky for the last Schur 

complement

• Schur preconditioner much more effective than the whole

Elasticity problem : last Schur complement
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Application of D.P. block-factorization to AMG

• Two-grid “c” - “f” partition:

• Choices of vectors:

– Schur complements can be viewed as coarse discretization 

matrices if they preserve the near null-space of the fine-grid 

matrix

– In adaptive AMG, it is important that the coarse space contains 

several “algebraically smooth” vectors, i.e., the smoother M 

cannot damp successfully:

– Constant vector for scalar diffusion equations

– Rigid body modes for elasticity equations

21











cccf

fcff

AA

AA
A

vv   )( 1AMI



Application to AMG (cont.)

• Let v = (vf, vc) be a vector in null-space of A

• Coarse-grid matrix:  the Schur complement matrix                                  

can be approximated by a sparse Ac , 

satisfying  

• Interpolation matrix:  let Mff be a factored s.p.d. matrix 

approximating A, such that

Then define an interpolation matrix 

satisfying                , which interpolate

back onto the fine grid
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Perspectives

• We now have a fast algebraic approx. factorization procedure 

that achieves D.P. and Schur monotonicity ….

• May not be good enough as a general solver or preconditioner

– Need analytical study for different PDEs

– Whether cond. number of preconditioned matrix depends only on 

approximation precision, not discretization dofs N ?

– Compare with traditional IC, ILU, etc.

• Incorporate into the superfast multifrontal sparse Cholesky 

procedure (Xia’s talk)

• Analyze, test robustness of new AMG preconditioner

– Interpolation matrix and coarse-grid matrix in AMG

• Parallelization, performance tuning (of  small matrices)

– More scalable than traditional factorization with smaller amount 

data to communicate
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